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Catalytic asymmetric functionalization of alkenes continues to OMe
be one of the most important methods for constructing chiral units. @ O
The palladium-catalyzed hydrosilylation of alkenes is a highly O Pphz

potent example of a hydro-metalation reaction that displays excellent
regioselectivity for aryl-substituted olefins (Schemé* Bddition

of a hydrosilane in the presence of an optically active palladium-
complex affords a chiral organosilane. The Tam&teming
oxidation is an important example of the numerous versatile
t.ransformations.organosilan(?s can updér@@ereqspecific oxidg— p-MeO—Ph-MOPFS (Figure 1) displayed the highest selectivity
tion affords a chiral alcohol with retention of configuration, making i the hydrosilylation of styrene, furnishir@a with 90% ee® In

the overall reaction sequence equivalent to an enantioselectiveq,r continued studies we focused on other possible ligands for the
Markovnikov hydration of an olefin. Opposed to the hydroboration, hygrosilylation.

the hydrosilylation can be conducted with very low catalyst
loadings, applying cheap hydrosilanes as the stoichiometric reagent,

making this process outstanding in terms of synthesizing chiral OO OO Q—
alcohols. o R o]
P—N P—N
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Figure 1. Monophosphlne ligands.
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131 Ar3NGy-CgHg, R=H Figure 2. Phosphoramidite ligands.
1-3¢: Ar=2-Cl-CgHy, R=H . e .
1-3d: Ar=3-CI-CgHy, R=H Chiral phosphoramidite ligands representedéby8 (Figure 2)
13 Qf;'gg i‘ccseﬁj’;:: introduced by Feringa and co-workers are interesting candidates
1-3g: Ar=2-CH3-CgHy, R=H for application in the hydrosilylatioh.They include the axially
1-3h: Ar=4-CHg-CgH,, R=H . . M . .
1312 Ar=2.4-(Chlayy-Celg, R=H chiral BINOL structure in c_omblnatlon with a phosphpftmtroger_l
1-3j: Ar=CgHs, R=CHs bond. Furthermore, as ligan8 demonstrates, additional chiral

elements can be introduced, allowing facile structure modification.
Th velopment of highly enantioselectiv ticall tiv
e. development o ghly ena lose.ec € opticaly "’TC .e Table 1. Palladium-Catalyzed Hydrosilylation of Styrene (1a)
palladium complexes for the hydrosilylation was troubled in its jsing Phosphoramidite Ligands?
infancy by the lack of activity of palladiumbisphosphine com-

plexes. Considering the excellent results obtained @tkymmetric ey igend conversion (¥ ee [l
bisphosphine ligands in asymmetric transition metal catalysis, the % ? 188 gg%
focus put on this ligand class is not surprising. However, with the 3 8 100 99 R)
discovery that some catalytical processes require a free coordination 4e 8 100 99 R)
site on the metal to proceed, the importance of monophosphine 5 8f 100 609

ligands became clear. Despite several reports of novel monophos- a Al ; ducted Wit/HSICH[CIPd(CHe)fligand
. . 5 : : reactions were conductea wi | gMs)|2/ligand —
phlne Ilg'a'nds, thu; far only Hayashi's MOP ligands hayg d|§played 1/1.2/0.005/0.02 unless otherwise state@onversion t®adetermined by
high efficiency with respect to reactivity and selectivity in the 14 NMR. cEe of 3a determined by chiral HPLC on a OD-H column.
hydrosilylation of aryl-substituted alken&$.Thus, palladium- d Absolute configuration determined by optical rotation and comparison with
: - : : literature data® 0.25 mol % Pd and 0.5 mol % ligand was applieBeaction
ca_talyzed hydrosilylation pf s_tyreniaa with the MQP ligand4 performed with the diastereomeriRg,Re,Ro)-8 ligand.
(Figure 1) affords upon oxidation 1-phenyl ethaBalin excellent
yield and 98% enantiomeric excess. Initially, ligands6—8 were tested in the hydrosilylation of styrene
We became interested in the asymmetric hydrosilylation reaction (Table 1)8 The reactions proceeded smoothly at room temperature
in the course of developing a novel class of aryl-monophosphino with 1 mol % of the catalyst affording 100% conversion to the
ferrocene ligands (MOPF ligands). product within 24 h. Upon oxidation under Tamao conditions, the
alcohol3awas obtained in yields 80%. Notably, ligand affords
* To whom correspondence should be addressed. E-mail: mj@kemi.dtu.dk. 3awith (S)-configuration in 55% ee (entry 1), wherea&urnishes
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the product with opposite configuration (entry 2), albeit with low Acknowledgment. We thank The Danish Technical Research
enantiomeric excess (20%). Liga8dlso lead to theR)-configured Council, Leo Pharmaceuticals, Lundbeckfonden, and Familien Hede
product, but with99% enantiomeric excess, which is the highest Nielsens Fond for generous support.
selectiity ever obsered in the hydrosilylation of styren@ntry
3). Lowering the catalyst loading to 0.25 mol % did not affect the
excellent selectivity displayed by ligar8i(entry 4).

To evaluate the impact of the configuration of substituents on
nitrogen, the diastereomeric liganBa(Rc,Rc)-8" was applied in References
the reaction (entry 5). While retaining the activity of the-fidand

Supporting Information Available: Detailed experimental pro-
cedures (PDF). This material is available free of charge via the Internet
at http://pubs.acs.org.
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