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Catalytic asymmetric functionalization of alkenes continues to
be one of the most important methods for constructing chiral units.
The palladium-catalyzed hydrosilylation of alkenes is a highly
potent example of a hydro-metalation reaction that displays excellent
regioselectivity for aryl-substituted olefins (Scheme 1).1 Addition
of a hydrosilane in the presence of an optically active palladium-
complex affords a chiral organosilane. The Tamao-Fleming
oxidation is an important example of the numerous versatile
transformations organosilanes can undergo.2 Stereospecific oxida-
tion affords a chiral alcohol with retention of configuration, making
the overall reaction sequence equivalent to an enantioselective
Markovnikov hydration of an olefin. Opposed to the hydroboration,
the hydrosilylation can be conducted with very low catalyst
loadings, applying cheap hydrosilanes as the stoichiometric reagent,
making this process outstanding in terms of synthesizing chiral
alcohols.

The development of highly enantioselective optically active
palladium complexes for the hydrosilylation was troubled in its
infancy by the lack of activity of palladium-bisphosphine com-
plexes. Considering the excellent results obtained withC2-symmetric
bisphosphine ligands in asymmetric transition metal catalysis, the
focus put on this ligand class is not surprising. However, with the
discovery that some catalytical processes require a free coordination
site on the metal to proceed, the importance of monophosphine
ligands became clear. Despite several reports of novel monophos-
phine ligands, thus far only Hayashi’s MOP ligands have displayed
high efficiency with respect to reactivity and selectivity in the
hydrosilylation of aryl-substituted alkenes.3,4 Thus, palladium-
catalyzed hydrosilylation of styrene1a with the MOP ligand4
(Figure 1) affords upon oxidation 1-phenyl ethanol3a in excellent
yield and 98% enantiomeric excess.

We became interested in the asymmetric hydrosilylation reaction
in the course of developing a novel class of aryl-monophosphino
ferrocene ligands (MOPF ligands).5

p-MeO-Ph-MOPF5 (Figure 1) displayed the highest selectivity
in the hydrosilylation of styrene, furnishing3a with 90% ee.6 In
our continued studies we focused on other possible ligands for the
hydrosilylation.

Chiral phosphoramidite ligands represented by6-8 (Figure 2)
introduced by Feringa and co-workers are interesting candidates
for application in the hydrosilylation.7 They include the axially
chiral BINOL structure in combination with a phosphorus-nitrogen
bond. Furthermore, as ligand8 demonstrates, additional chiral
elements can be introduced, allowing facile structure modification.

Initially, ligands6-8 were tested in the hydrosilylation of styrene
(Table 1).8 The reactions proceeded smoothly at room temperature
with 1 mol % of the catalyst affording 100% conversion to the
product within 24 h. Upon oxidation under Tamao conditions, the
alcohol3awas obtained in yields>80%. Notably, ligand6 affords
3a with (S)-configuration in 55% ee (entry 1), whereas7 furnishes* To whom correspondence should be addressed. E-mail: mj@kemi.dtu.dk.

Scheme 1

Figure 1. Monophosphine ligands.

Figure 2. Phosphoramidite ligands.

Table 1. Palladium-Catalyzed Hydrosilylation of Styrene (1a)
Using Phosphoramidite Ligandsa

entry ligand conversion [%]b ee [%]c,d

1 6 100 55 (S)
2 7 100 20 (R)
3 8 100 99 (R)
4e 8 100 99 (R)
5 8′f 100 60 (S)

a All reactions were conducted with1a/HSiCl3/[ClPd(C3H5)]2/ligand-
1/1.2/0.005/0.02 unless otherwise stated.b Conversion to2adetermined by
1H NMR. c Ee of 3a determined by chiral HPLC on a OD-H column.
d Absolute configuration determined by optical rotation and comparison with
literature data.e 0.25 mol % Pd and 0.5 mol % ligand was applied.f Reaction
performed with the diastereomeric (RA,RC,RC)-8′ ligand.
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the product with opposite configuration (entry 2), albeit with low
enantiomeric excess (20%). Ligand8 also lead to the (R)-configured
product, but with99% enantiomeric excess, which is the highest
selectiVity eVer obserVed in the hydrosilylation of styrene(entry
3). Lowering the catalyst loading to 0.25 mol % did not affect the
excellent selectivity displayed by ligand8 (entry 4).

To evaluate the impact of the configuration of substituents on
nitrogen, the diastereomeric ligand (RA,RC,RC)-8’ was applied in
the reaction (entry 5). While retaining the activity of the Pd-ligand
complex, the absolute configuration was inversed, accenting to the
effect from the absolute stereochemistry of the binaphthol system.
The relative low enantiomeric excess of3a (entry 5, Table 1) clearly
demonstrates that this diastereoisomer (8′) has mismatched chiral
elements.

Given the excellent performance of the Pd-8 complex in the
hydrosilylation reaction, we wanted to explore the scope of this
reaction toward diversely functionalized styrenes. Table 2 sum-
marizes the results obtained with substrates1a-1j.

Electron-withdrawing substituents prolong the reaction time
(entry 2-6), but in all cases excellent yields and enantiomeric
excess is achieved. The positioning of these substituents on the
aromatic ring has no apparent effect on the outcome of the reaction.
The weakly electron-donating methyl substituent affords comparable
selectivity when positioned ortho to the vinyl group (entry 7).
p-Methyl-substituted alcohol3h was obtained with the lowest ee
(entry 8). However, reconstituting the 2-methyl group enhanced
the selectivity to 96% (entry 9).â-Methyl-substituted styrene1j
was an excellent substrate in the reaction, the silyl group was
introduced exclusively at the benzylic position, and the product
was obtained with 98% enantioselectivity (entry 10).

Herein we have presented a novel catalytic system for the
asymmetric hydrosilylation of aromatic alkenes giving the products
in high yields and with the highest enantioselectivity ever observed
for this reaction. The reaction works efficiently for a variety of
substituted aromatic alkenes, giving access to almost optically pure
benzylic alcohols in high yields after Tamao oxidation.
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Table 2. Catalytic Asymmetric Hydrosilylation of Aromatic
Alkenesa

entry substrate
reaction
time [h]

conversion
[%]b

yield
[%]c

ee
[%]d

1e 1a 16 100 87 99 (R)
2e,f 1b 144 100 94 95 (R)
3g 1c 40 100 89 96 (R)
4g 1d 60 100 91 98 (R)
5g 1e 40 92 74 95 (R)
6f,g 1f 60 100 88 98 (R)
7g 1g 40 83 75 97 (R)
8g 1h 40 100 95 86 (R)
9g 1i 40 100 80 96 (R)

10f,g 1j 40 100 91 98 (R)

a All reactions were conducted with substrate/HSiCl3/ [ClPd(C3H5)]2/
ligand, 1/1.2/0.00125/0.005 at 20°C, unless otherwise stated.b Conversion
to silane determined by1H NMR. c Isolated yield of silane.d Absolute
configuration determined by optical rotation.e Ee of alcohol determined
by HPLC on a Chiralcel OD-H column.f Reaction performed at 40°C.
g Ee of alcohol determined by GC on a Chiralsil-Dex column.
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